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CHAPTER 4 Detecting Mean Differences

Hypothesis testing methods that seek to detect
the mean differences arising from two or more
independent samples are among the most common
statistical procedures performed. However, these pro-
cedures are frequently used without regard to some
basic assumptions about the data under investigation
— which, in some cases, leads to errors in interpreta-
tion.

This section describes and illustrates several
methods for detecting mean differences. It focuses on
(1) cases in which only two means are involved, and
(2) situations involving more than two means. It also
presents suggestions concerning the use and abuse of
means testing procedures.

Cases Involving Two Means

Several scenarios within the biocriteria program re-
quire investigators to compare the mean differences
between two independent populations. Suppose for
example, that we want to use biocriteria in a regula-
tory setting in the following situation:

A wastewater treatment plant discharges its ef-
fluent into a stream at a single point. Upstream of the
discharge facility, the stream is in good shape (unaf-
fected by any known sources of pollution). The re-
source agency has sufficient funds to monitor three
stations upstream of the discharge site and a compara-
ble number of streams downstream of the discharge
site during the late summer. The agency has chosen to
evaluate aquatic life use impairment using benthic
species richness.

Ateach of the six sites, 10 independent measures
of species richness were generated by randomly
placed ponar grabs over a relatively small spatial area
(a sample size of 10 was chosen based on variability
estimates generated at a different, but similar site).
Sites of comparable habitat quality were chosen for
sampling. The upstream sites will serve as a reference
condition against which to compare the downstream
condition.

In addition to the current survey (i.e., sampling
regime, data collection, and interpretation), the regu-
latory agency has identified an additional upstream
site for which it has 10 years of comparable long-term
(historical) data. The investigators have no reason to
believe that a time component exists in the long-term
data. Table 4.1 presents descriptive information asso-
ciated with the upstream and downstream sites and
with the long-term site.

The question for investigators is this: Do the data
reveal a downstream effect associated with the
wastewater discharge? Several methods are available
for assessing the mean differences between the up-
stream and downstream sites, and each method has
both positive and negative aspects.

Random Sampling Model, External Value
forc

Suppose investigators believe that the 30 measures of
benthic species richness collected at the upstream
and downstream sites can be treated as random sam-
ples from appropriate populations. In particular, they

i Table 4.1—Descriptive statistics: upstream-downstream measures of benthic species richness.
SITE N I MEAN STD. MINIMUM | MAXIMUM IO%_;REX:MED All\.’:(SE(I))LﬁE
F DEVIATION
Upstream 1 10 10.0 2.3 7.5 14.8 9.7 1.5
2 10 12.6 2.5 10.3 18.0 12.2 1.3
3 10 11.2 24 72 151 11.2 1.0
Downstream 4 10 10.4 2.4 6.3 13.7 10.5 1.0
5 10 77 3.7 3.4 14.7 7.4 2.7
6 10 9.0 1.8 5.6 11.1 9.1 15
Historic 7 ; 200 10.4 ; 3.4 0.17 19.4 11.1 2.6
Pooled Data 1-3 30 11.3 2.5 7.2 18.0 11.1 1.0
4-6 30 . 9.0 2.9 3.4 14.7 9.0 1.6
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CHAPTER 4. Detecting Mean Differences

believe that the two populations have the same form
(i.e., normal distributions with the same variance, o)
but different means, 1, and 1. How can the investiga-
tors use statistical theory to make inferences about
the effect of the wastewater treatment plant dis-
charge?

If the data were random samples from the popu-
lations, with N, = 30 observations from the upstream
population and N, observations from the downstream
population, the variances of the calculated averages,
Y, and Y, would be:

o’ o’ (4.1)

V(Ya)=N— , V(Yb)=N—

a b
Likewise, in the random sampling model, Y, and
Y, would be distributed independently, so that:

¢’ o’ 2( 1 1 J
V(Y,-Y,)= — + — =0} —+—
7N, N, N, N, (4.2)
Even if the distributions of the original observa-
tions had been moderately nonnormal, the distribu-
tion of the difference Y,-Y, between sample averages
would be nearly normal because of the central limit
effect. Therefore, on the assumption of random sam-
pling,
- (Yb _Ya)_("‘l’b _ua)

T 1 (4.3)
o |—+—
Na Nb

would be approximately a unit normal deviate.

Now, o, the hypothetical population value for
the standard deviation, is unknown. However, the
historical data yield a standard deviation of 3.4. If this
value is used for the common standard deviation of
the sampled populations, the standard error of the dif-
ference, Y,-Y, = 2.3, is

1{—1—+i =089
30 30

Based on the robust estimators (trimmed mean
difference of 2.1 and median absolute difference of
1.6) the standard error of the difference would be
0.41. If the assumptions are appropriate, the approxi-
mate significance level associated with the postulated
difference (u,—u;) in the population means will then
be obtained by referring

_23-(u, —Hy),
%o = 89

to a table of significance levels of the normal distribu-
tion. In particular, for the null hypothesis (1,—1;) = 0,
z, = 2.3/.89 = 2.6, and Pr(z < 2.6) < .005. Again, the
upstream/downstream effect seems to be realistic (us-
ing the robust estimators, z = 5.1 and Pr[z < 5.1]

<.001). Note that we use the z distribution in this ex-
ample because the population variance is determined
from an external set of data that represents the popu-
lation of interest — an assumption equivalent to as-
suming that the variance of the population is known
(i.e., not estimated).

Random Sampling Model, Internal Value
forc

Suppose now that the only evidence about ¢ is
from the N, = 30 samples taken upstream and the N,

= 30 samples taken downstream. The sample vari-
ances are

Y, -Y,
sl = Z( ) _62s
L1
Y, -Y
_—Z( V)" _gqy
N, -1

On the assumption that the population variances
of the upstream and downstream sites are, to an ade-
quate approximation, equal, these estimates may be
combined to provide a pooled estimate of s* of this
common ¢, This is accomplished by adding the sums
of squares in the numerators and dividing by the sum
of the degrees of freedom,

sz - Z(Yal —Ya)z +Z(Ybl _Yb)2
N, +N, -2

=752

On the assumption of random sampling from
normal populations with equal variances, in which
the discrepancy [(Y,-Y}) — (#,—14)] is compared with
the estimated standard error of YY), a t distribution
with N, +N,-2 degrees of freedom is appropriate. The
t statistic in this example is calculated as

(Y, =Y, —(n, —1y) =E _

1 1 0.71
S |—+—o
Na Nh

This statistic is referred to a t table with 58 de-
grees of freedom. In particular, for the null hypothesis
that (u,~,) = 0, Pr(t < 3.2) < .001. Again, an up-
stream/downstream effect seems plausible. Using the
robust statistics, a pooled estimate of error can be cal-
culated as the average of the median absolute devia-
tions associated with each data set ([1 + 1.6]/2 =
1.3). Therefore, the t statistic is 6.3 and the Pr(t <6.3)<
.001. Note that we use the t distribution in this exam-
ple because the population variance is estimated from
the survey data and not assumed to be known.

t=

Testing against a Numeric Criterion

In the preceding sections, hypothesis tests were pre-
sented for the two-sample case. Similar tests are avail-
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CHAPTER 4. Detecting Mean Differences

able for testing a sample mean against a fixed numeric
criterion (for which an associated uncertainty does
not exist). In this case, the £ statistic can be written as
follows:

Y-p (a.4)

t=——
,1

S J—

n

Here, s is the sample standard deviation and p is
the numeric criterion of interest. The probability of a
greater value can be found in a ¢ table using n-1 de-
grees of freedom.

A Distribution-Free Test

In many instances, the assumption that the raw data
(or paired differences) are normally distributed does
not hold. Even the simplest monitoring design involv-
ing the comparison of two means requires either (1) a
long sequence of relevant previous records that may
not be available or (2) arandom sampling assumption
that may not be tenable. One solution to this dilemma
is the use of distribution free statistics such as the W
rank sum test (Hollander and Wolfe, 1973). The Wtest
is designed to test the hypothesis that two random
samples are drawn from identical continuous distri-
butions with the same center. An alternative hypothe-
sis is that one distribution is offset from the other, but
otherwise identical. Comparative studies of the ¢ and
W tests indicate that while the ¢ test is somewhat ro-
bust to the normality assumption, the W test is rela-
tively powerful while not requiring normality. In
many cases, performing both the ¢ and W tests can be
used as a double check on the hypothesis.

To conduct the Wtest (see Chapter 2), the investi-
gator combines the data points from the samples, but
maintains the separate sample identity. This overall
data set is ordered from low value to high value, and
ranks are assigned according to this ordering. To test
the null hypothesis of no difference between the two
distributions f(x) and g(x) (i.e., Hy: flx] = g[x]), the
ranks of the data points in one of the two samples are
summed:

W =R, (4.5)

Statistical significance is a function of the degree
to which, under the null hypothesis, the ranks occu-
pied by either data set differ from the ranks expected
as aresult of random variation. For small samples, the
W statistic calculated in Equation 4.5 can be com-
pared to tabulated values to determine its signifi-
cance. Alternatively, for moderate to large samples, W
is approximately normal with mean E(W) and vari-

ance V(W):

E(W)ZNa(Nb;Na +1) (4.6]

V(W):NaNh(Nll’2+N“+l) (4.7)
s W -E(W)
T (0

In the upstream/downstream case that we have
been discussing, E(W) = 1,127,z = 3.12, and Pr(< z)=
0.0018.

Evaluating Two-sample Means Testing

Table 4.2 summarizes the advantages and disadvan-
tages of these two-sample means testing procedures.
Both of these methods, to one degree of another, in-
volve assumptions of normality, equality of variance,
and independence. In all cases, the latter assumption
is of greatest concern. Therefore, data with inherent
time trends, seasonal cycles, or spatial correlations
unrelated to the effect of interest should be carefully
scrutinized prior to hypothesis testing using these
procedures. Investigators can remove time trends and
spatial correlations from the data prior to testing them
for mean differences (Reckhow, 1983).

Multiple Sample Case

Hypothesis testing of multiple sample mean differ-
ences can be accomplished using both parametric (as-
sumes normality) and nonparametric (no assumption
of normality) approaches. The typical parametric ap-
proach to multiple means testing falls under the
broad class of statistical models and methods called
analysis of variance (ANOVA). Nonparametric coun-
terparts include a number of specific tests including,
among others, the Kruskal-Wallis rank sum test.

Both the parametric and nonparametric methods
can be used with experimental and survey type data.
However, the development of these statistical models
include many permutations and assumptions and
cannot be covered in this text. Instead, a brief discus-
sion of each method is followed by an example of
their typical outputs.

Parametric or Analysis of Variance
Methods

ANOVA methods are a class of techniques for analyz-
ing experimental data. A continuous response vari-
able, known as the dependent variable, is measured
under experimental conditions identified by classifi-
cation variables known as independent variables or
treatments. The variation in response is explained as
an effect of the classification variable and random er-
TOT.

Numerous decisions must be made by the inves-
tigator before attempting to use ANOVA procedures.
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CHAPTER 4. Detecting Mean Differences

Table 4.2.—Assumptions, advantages, and disadvantages associated with various two-sample means testing

procedures.
REFERENCE SHOULD CONSIDER SHOULD NOT
DISTRIRBUTION ASSUMPTIONS ADVANTAGES DISADVANTAGES FOR USE WHEN: USE WHEN:
External Past data can No assumption of | Need relevant, Quality, Known impacts to
provide relevant | independence of | lengthy past I consistency, and reference site have
reference set for | errors. No need records. length of data are | occurred, or
observed for random Construction of deemed to physical and
difference Y,-Y; | sampling reference represent a healthy | biological
hypothesis. distribution can ecosystem. differences
be tedious between the impact
and reference site
are identified.
Normal Individual Continuous Need to know 5. | Quality, Quality of data is
distribution with | observations are | reference 'Need assumption . consistency, and suspect or impacts
external estimate | as if obtained by | distribution that | of independence | length of data are ! at the external site
of o random sampling | is easy to of individual deemed to be a are known or
from normal calculate. erTors coming sample from a suspected.
populations with from random healthy ecosystem.
common standard sampling Data
deviation. hypothesis. transformation may
be necessary to
achieve normality.
Normal Individual No external data | Need assumption | Most commonly Normality

distribution with
internal estimate
ofo

observations are
as if obtained by

random sampling

from normal

needed.

of independence
of individual
errors coming
from random

'used test.
Appropriate if
normality
assumptions hold.

assumptions do not
hold. Generally,
robust estimators
of the mean and

as if obtained by
random sampling
from populations
of almost any
kind.

data needed.
Populations

| randomly

. sampled need not
] be normal.

or symmetry of
individual errors
arising from
random sampling
hypothesis.

populations with sampling If outliers or variance can
unknown hypothesis. influential data reduce the
common standard apprent, consider | influence of
deviation o 'the use of robust outliers.
estimated by s estimators of the
mean and variance.

Distribution free | Individual Computations are | Need assumption : Can be used if No real

observations are | easy. No external |of independence | normality disadvantage of

assumptions are
suspect. Can be
-used to verify
results of
parametric tests.

these tests. In most
cases, power of the
test is equivalent or
near the parametric
| counterpart.

These decisions include the effects of interest (model
specification — one-way designs, two-way designs,
and so forth); whether the classification variables are
random, fixed, or nested; whether any interactions
(nonadditive effects) are present in the data; how to
handle unbalanced designs (unequal sample sizes for
the various treatments); and the nature of the error

term.

As we can see from this list, ANOVA procedures
are not simple but require a great deal of thought. In
general, the ANOVA model should follow directly
from the sample design used to collect the biocriteria

24

data. The following model illustrates a simple
one-way, fixed block design like that described in the
upstream/downstream case presented here. The over-
all model for the ANOVA is

where

Yij =p+o; +¢,

(4.9)

j

Y;; = the jth response for the i site

u = the population mean

o; = the effect of siteion Y
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CHAPTER 4. Detecting Mean Differences

e;; = the error associated with each
observation in the data.

The model assumes that the errors are normally
distributed with mean 0 and variance c*. Based on the
model, any observation is composed of an overall
mean (u), a site effect (a), and a random element (e)
from a normally distributed population. Hypothesis
testing for the ANOVA model is undertaken by calcu-
lating the variance associated with model compo-
nents (sums-of-square differences around the mean
effect). A test statistic is formed by comparing the
mean square differences associated with a model
component to the mean error term. This statistic is
distributed as an F distribution. Table 4.3 presents an
example of this variance breakdown for the simple
upstream/downstream model.

Table 4.3.— Analysis of variance results for the case
study model.
SOURCE | DF | SUM OF MEAN F VALUE | Pr>F

SQUARES | SQUARE
Site 5 146.57 29.31 4.51 0
Error 54 350.67 6.49 :

o T i

Total 59 | 497.24 3

As seen in the table, the effect of site means is an
important indicator of the level of benthic species
richness. Therefore, it seems a good idea to explore
the relationship among the site means as a method of
examining a possible gradient of upstream/down-
stream differences. Several methods are available for
testing the differences between site means. In this ex-
ample, the method of least significant difference
(LSD), Duncan’s multiple range test, and Tukey’s
studentized range test are presented. (A review of
these and other multiple comparison methods is in
the SAS/STAT Guide for Personal Computers.) Tables
4.4 through 4.6 present the results of these multiple
comparison tests.

Table 4.4.—Least significant difference multiple
comparison test.
GROUPING MEAN N SITE

A 12.6 10 o 2
B 11.2 10 3 )
B 10.4 10 4 L
B 9.9 10 1
B 8.9 10 N 6

7.6 10 5

Table 4.5.—Duncan’s multiple comparison test.

GROUPING MEAN 1‘ N SITE
A 12.6 | 10 2
B A 11.2 10 3
B A 10.4 10 4
B Cc 9.9 10 1
B C 8.9 10 6
. C 7.6 10 5

Table 4.6.— Tukey’s multiple comparison test.

GROUPING MEAN N SITE
‘A 126 10 2

B A 11.2 10 3

B A C 10.4 10 4

B C 9.9 10 1

B C 8.9 10 6
| C (7.6 10 5

In the above tables, sites within a specified
grouping are not different at the o = 0.05 level of sig-
nificance.

Nonparametric or Distribution Free
Procedures

Distribution free methods for testing multiple sample
means are available in much the same format as for
parametric tests. The Kruskal-Wallis rank sum test
(one-way design) and the Friedman rank sum test
(two-way design) are frequently used when the nor-
mality assumptions do not hold (see Hollander and
Wolfe [1973] for a review of these methods). Multiple
comparison methods based on the individual rank
scores for each site are available.

Again, the investigator must develop the model
to match the experimental design. In the up-
stream/downstream comparisons of benthic species
richness, the Kruskal-Wallis test with a simple
one-way model results in a chi-square statistic of
16.38 (Pr < chi-square = 0.006). Again, the up-
stream/downstream sites appear to differ in the mea-
sured biocriteria. Results of the multiple comparison
tests using ranks were similar to those presented in
the ANOVA model.

A Test for Broad Alternatives

Frequently, investigators are faced with situations in
which tests for mean differences or variance differ-
ences are not sufficient. For example, investigators
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may realize that smaller fish are more sensitive to a
pollutant than larger fish. In such cases, simple test-
ing for mean differences (in which the mean is calcu-
lated without regard to size class) between reference
and impacted sites may not suffice. Instead, the mea-
sure of toxic effect will be better reflected through
changes in the distribution of fish caught at the two
sites. Examining the differences in distribution func-
tions among sites may be a more sensitive way to de-
tect effects than relying on population estimates such
as the mean and variance.

Statistics designed to detect broad classes of al-
ternatives, as in the scenario presented here, are dis-
tribution free tests (i.e., they do not rely on normality
assumptions), although they do have parametric
counterparts. For a single sample, goodness-of-fit
tests to gage the correspondence between an empiri-
cal distribution function of observations and a spe-
cific probability model or distribution (e.g., normal or
lognormal) may be useful. These tests can also be con-
ducted using the chi-square statistic (see Snedecor
and Cochran, 1967).

The Kolmogorov=-Smirnov
Two=-Sample Test

100
905
so-f
70
60
50

401

Cumulative Percent

301
20 ]

i0{

Within the biocriteria program investigators will
frequently be challenged to evaluate a broad range of
differences between two or more populations. The
Kolmogorov-Smirnov (KS) two-sample test is easy to
implement and can be used to evaluate the relation-
ship between two distribution functions. This test
provides graphic and statistical evaluations of two
sets of data.

The KS two-sample test involves the develop-
ment of two cumulative distribution functions (CDFs)
to test the hypothesis that each sample was taken
from the same population. The test is based on the dif-
ference between the empirical distribution functions.
The largest difference between the two functions,
D, forms the basis for the test statistic. D_,, is the
maximum vertical distance at any horizontal point
between the two CDFs (Fig. 4.1).

To generate a CDF for an individual sample, the
data are ordered from lowest to highest, and the rank
order of each point determined. Dividing each rank
by the sample size results in a cumulative distribu-
tion function ranging from 0 to 1 (or 0 to 100 percent,
if multiplying by 100). The two samples need not
have the same number of observations. Tabled values
of the test statistic are available for various sample
sizes (Hollander and Wolfe, 1973). The test is both
one-sided and two-sided. For the benthic species rich-

upstream sites
= === downstream sites

Legend:

3 5 7 9

T T T LA B 1

11 13 15 17 19

Species Richness

Figure 4.1—Cumulative distribution functions of upstream and downstream sites.
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ness example shown here in Figure 4.1, D, is 0.433
(43.3 percent) which occurred at a species richness
value of 10.6. The null hypothesis is rejected with a
Type I error rate of 0.0072.

Relationship of Survey Design
to Analysis Technique

Table 4.7 outlines the relationship between means
testing techniques and selected survey designs as de-
scribed in earlier sections. As a general rule, the data
analysis techniques are driven by the survey design.
The principle decision points are the number of sites,
the available sample size, and the presence or absence
of reference sites. However, investigators should not
be constrained by the survey design. Data explora-
tion, using any technique that fits the data, is encour-
aged and can provide insightful results.

Table 4.7.—Survey design and analysis techniques.

SURVEY DESIGN

MEAN DETECTION METHOD

Upstream/downstream: random sampling at single sites
using current survey data

t-test using an internal value of the variance; Wilcoxon test;
with large data sets, a KS two-sample test may be
appropriate

Upstream/downstream: random samplings at multiple sites
using current survey data

One-way ANOVA using an internal value of the variance;
KS two-sample test on merged upstream and downstream
data; Kruskal-Wallis rank sum test

Upstream/downstream: random sampling within spatial or
temporal strata with one or more sites

Two-way (or more complicated) ANOVA tests; Friedman
rank sum test (and other more complicated nonparametric
tests)

Impact site data with large off-site external data; for
example when determination of impact is not clearly
definable or no good upstream reference condition
available

i External reference distribution tests including the

two-sample KS test; t-test with external estimate of the
variance

Systematic sampling such as random sampling along a
transect or nodes of a grid ’

ANOVA, t-tests with internal estimates of the variance, and
possibly distribution tests (also note that such designs may
be subjected to techniques that demonstrate geographical
trends and patterns such as kriging and GIS methods}

Regionally impacted sites with one or more reference sites

Two-sample KS test
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